Dispositivi indossabili basati su tessili elettronici per lo sviluppo di sistemi aptici

Danilo De Rossi

University of Pisa d.derossi@ing.unipi.it

NANOITALTEX 2008

Milano, 26-27 Novembre 2008

Alloderma project (1)

International pre-competitive scientific research

Development of new hi-tech products

NANOITALTEX 2008 Milano, 26-27 Novembre 2008

Alloderma project (2)

- Coordinator: Mectex Spa
- Scientific director: Silvio Faragò, Stazione Sperimentale per la Seta (SSS)
- Partners
 - Mectex Spa
 - Stazione Sperimentale per la Seta (SSS)
 - Centro Interdipartimentale Piaggio (Università di Pisa)
 - Istituto di Tecnologie Industriali ed Automazione ITIA (CNR)
 - ELSE Srl
 - Stamperia di Lipomo
 - Castagna Spa
- Funded by Regione Lombardia.

Research aims

- Sensing garments
 - Human motion/posture detection
 - Conductive Elastomer (CE) sensors
 - Piezoresistive effect
- Provide new tools to be applied in the field human movement monitoring
 - Portable
 - Comfortable for the user

NANOITALTEX 2008 Milano, 26-27 Novembre 2008

Human movement monitoring

- Movement monitoring
 - Gesture classification
 - Human activity classification
 - Motion capture/analysis
- Applications
 - Rehabilitation
 - Sport
 - Human Machine Interaction

Movement analysis instrumentation (1)

- Standard "off the shelf" motion capture systems
 - Electromechanical
 - Rigid part on human body
 - Soft tissue
 - Tricky positioning
 - Multi DOF joints (shoulder)
 - Optical
 - Restricted environment
 - Expensive
 - Magnetic
 - Interference by ferroelectric materials and electromagnetic fields
 - Inertial
 - Rigid part applied on each articulation

Movement analysis instrumentation (2)

- Standards
 - Accurate
 - Un-portable
 - Limited to structured environments
 - Obtrusive parts on the user

Electrogoniometers

Sensing garment based on conductive elastomer sensors

Main Idea

- Distribution of a set of sensors on an elastic and adherent garment
- During the user movement, the system generates a set of signals which are related to local fabric deformations

Data Interpretation

Generated signals related to user movements

Materials & Methods (1)

- Sensors: CE materials
 - Mixture of conductive particles and silicon rubber
 - Piezoresistive effects
 - A fabric deformation can be related to a sensor electrical resistance variation
 - Integrated on a Lycra-cotton fabric
 - No modification of the fabric mechanical properties

NANOITALTEX 2008 Milano, 26-27 Novembre 2008

Materials & Methods (2)

- Production process
 - Mask design
 - Determination of sensors position and orientation
 - Redundant sensor set around joints to be monitored
 - Validate the design: experimental trials
 - Topology traced on a three-dimensional model of the human body
 - Mixture preparation, deposition and vulcanization

Materials & Methods (3)

- Sensing Garments Main features
 - Elasticity, lightness, good comfort for the user
- Drawbacks
 - Textile substrate (hysteresis, relaxation times)
 - Different sensor positioning after re-wearing
 - The "initial" status changes

NANOITALTEX 2008 Milano, 26-27 Novembre 2008

Electrical Topology & acquisition front-end

- Topology and electrical model
 - Sensor line
 - S_1-S_n
 - Connections
 - Piezoresistive, c_i
 - No metallic wires
 - Comfort
 - Mechanical resistance
- Electronic interface
 - Piezoresistive connection compensation

The CE Sensing Glove (1)

- Sensing glove
 - 20 piezoresisitive sensors
 - Distributed over the hand joints

References:

- Tognetti, Lorussi, De Rossi, "Wearable Kinaesthetic System for Capturing and Classifying Upper Limb Gesture in Post-Stroke Rehabilitation", Journal of NeuroEngineering and Rehabilitation, Vol. 2, N. 8, March 2005.
- -Lorussi, Scilingo, Tesconi, Tognetti, De Rossi, "Strain sensing fabric for hand posture and gesture monitoring", IEEE Transactions On Information Technology In Biomedicine, Vol 9, N. 3, pp. 372-381, September 2005
- -Tognetti, Carbonaro, Zupone, De Rossi, "Characterization of a Novel Data Glove Based on Textile Integrated Sensors", 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New York, USA, September 2006.

The CE Sensing Glove (2)

- Hand gesture classification
 - ASL recognition + basic hand grips

The CE Sensing Glove (3)

Results

 Angle measurement: 5% error as assessed in comparison with Cyberglove®

Dashed lines: CE sensing glove outputs.

Blue lines: Cyberglove outputs.

Robot Aided Rehabilitation (1)

real-time tracking of the hand kinematics – VR interaction therapeutic videogame-based system

Manipulation of virtual objects

Robot Aided Rehabilitation (2)

3D Hand model

Hand model designed in order to show the capability of the sensorized glove in tracking hand **grasp and release** movements with an accuracy sufficient to provide visual feedback in near real-time.

Subjects generally considered as satisfactory the near real-time animation of the 3D hand model controlled via the sensorized glove.

NANOITALTEX 2008 Milano, 26-27 Novembre 2008

The sensing shirt (1)

- Sensors characteristics
 - 29 piezoresistive sensors
 - distributed on all the upper limb joints
- Upper arm gesture classification
 - Calibration phase: a set of postures is registered.
 - User postures are recognized during the movement.

The sensing shirt (2)

Flexion (a) and abduction (b) angles of the wrist.

Extension (a) and flexion (b) angles of the shoulder.

Body Machine Interfacing (1)

NANOITALTEX 2008 Milano, 26-27 Novembre 2008

Body Machine Interfacing (2)

- •Results
- •The subject was asked to follow a reference path in the virtual environment
- •The ability of subjects in following the reference trajectory has been evaluated
- •An improvement of the ability with training has been observed

Explorative trial

Recorded trajectories

Frror vs. trial N.

Milano, 26-27 Novembre 2008

Alloderma aims

- Improvement of the existing technology toward industrial feasibility
 - Materials and production process
 - Sensors and fabric substrate
 - Electronics
 - Connections
- Applications
 - Design and ergonomics

Materials and production process

- New high-tech fabrics
 - Bi-elastic fabrics
 - Comfort, elasticity and resistance
- Industrial production
 - Sensor materials
 - Solvent, Low resistivity
 - Screen-printing
 - Low viscosity
 - Alternative process
 - Inkjet with conductive inks
 - Multilayer
 - Improve insulation

Electronics

- Based on existing design
- New characteristics
 - Fully wearable
 - Wrist or arm worn
 - Inertial sensing
 - Realtime embedded software
 - Flexible connections

Applications: Design and ergonomics (1)

Ergonomics for product evaluation

Applications: Design and ergonomics (2)

Virtual prototyping

